Femtosecond Laser Cutting of 110–550 µm Thickness Borosilicate Glass in Ambient Air and Water

12Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

The cutting quality and strength of strips cut with femtosecond-duration pulses were investigated for different thicknesses of borosilicate glass plates. The laser pulse duration was 350 fs, and cutting was performed in two environments: ambient air and water. When cutting in water, a thin flowing layer of water was formed at the front surface of the glass plate by spraying water mist next to a laser ablation zone. The energy of pulses greatly exceeded the critical self-focusing threshold in water, creating conditions favorable for laser beam filament formation. Laser cutting parameters were individually optimized for different glass thicknesses (110–550 µm). The results revealed that laser cutting of borosilicate glass in water is favorable for thicker glass (300–550 µm) thanks to higher cutting quality, higher effective cutting speed, and characteristic strength. On the other hand, cutting ultrathin glass plates (110 µm thickness) demonstrated almost identical performance and cutting quality results in both environments. In this paper, we studied cut-edge defect widths, cut-sidewall roughness, cutting throughput, characteristic strength, and band-like damage formed at the back surface of laser-cut glass strips.

Cite

CITATION STYLE

APA

Markauskas, E., Zubauskas, L., Račiukaitis, G., & Gečys, P. (2023). Femtosecond Laser Cutting of 110–550 µm Thickness Borosilicate Glass in Ambient Air and Water. Micromachines, 14(1). https://doi.org/10.3390/mi14010176

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free