Enrichment of miR-126 enhances the effects of endothelial progenitor cell–derived microvesicles on modulating MC3T3-E1 cell function via Erk1/2-Bcl-2 signalling pathway

11Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective: To evaluate whether EPC-MVs could promote bone regeneration by directly regulating osteoblast through miR-126. The underlying mechanisms were also explored. Methods: EPCs were isolated from bone marrow mononuclear cells. EPC-MVs were collected from EPCs cultured medium. The lentivirus was used to induce miR-126 over-expression in EPCs and EPC-MVs. miR-126 expression was detected by qRT-PCR. The proliferation, migration, apoptosis and differentiation abilities of osteoblast cells MC3T3-E1 were analysed in the presence or absence of EPC-MVs or miR-126 overexpressed EPC-MVs (EPC-MVs-miR126). The proteins of Erk1/2 and Bcl-2 were analysed by western blot. Erk1/2 inhibitor was used for pathway exploration. Results: EPC-MVs reduced apoptosis and promoted proliferation and migration of MC3T3-E1 cells, which could be enhanced by miR-126 enrichment (p< 0.05). Neither EPC-MVs nor EPC-MVs-miR126 had an effect on MC3T3-E1 cell osteogenic differentiation (p> 0.05). EPC-MVs-miR126 had better effects than EPC-MVs on upregulating the expressions of p-Erk1/2 and Bcl-2, which were abolished by Erk1/2 inhibitor. ERK1/2-Bcl-2 activity plays a crucial role in the regulation of EPC-MVs/EPC-MVs-miR126 on the effect of MC3T3-E1 cells. Conclusion: EPC-MVs promote proliferation and migration of MC3T3-E1 cell while reduced apoptosis via the miR-126/Erk1/2-Bcl-2 pathway. A combination of EPC-MVs and miR-126 might provide novel therapeutic targets for bone regeneration and fracture healing through regulating osteoblast.

Cite

CITATION STYLE

APA

Chen, G., Li, P., Liu, Z., Zeng, R., Ma, X., Chen, Y., … Lin, H. (2019). Enrichment of miR-126 enhances the effects of endothelial progenitor cell–derived microvesicles on modulating MC3T3-E1 cell function via Erk1/2-Bcl-2 signalling pathway. Prion, 13(1), 106–115. https://doi.org/10.1080/19336896.2019.1607464

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free