Abstract
Meloidogyne incognita is one of the most destructive soil pests, causing serious economic losses in tomato production. Here, in vitro experiments demonstrated that the Bacillus licheniformis strain JF-22 has the potential to prevent M. incognita infection. A pot experiment confirmed that B. licheniformis strain JF-22 isolated from the tomato rhizosphere soil and planted in the tomato root-knot nematode disease area effectively prevented and controlled M. incognita, reducing its negative effect on tomato growth. Additionally, the composition of volatile substances secreted by B. licheniformis strain JF-22 was analyzed using solid-phase microextraction and gas chromatography–mass spectrometry. We detected acetoin, 2,3-Butanediol, [R-(R*,R*)]-, and hexamethyl cyclotrisiloxane as the main components among these volatiles. Using MiSeq sequencing technology and bioinformatics, we analyzed the influence of B. licheniformis strain JF-22 on the microbial community of the tomato rhizosphere. B. licheniformis strain JF-22 changed the composition of the microbial community; particularly, it significantly reduced the diversity of the fungal community. Furthermore, using the FUNGuild and PICRUSt databases, we predicted the effect of JF-22 on microbial community function. In conclusion, B. licheniformis strain JF-22 may be considered as a potential biocontrol agent against M. incognita.
Author supplied keywords
Cite
CITATION STYLE
Du, J., Gao, Q., Ji, C., Song, X., Liu, Y., Li, H., … Liu, X. (2022). Bacillus licheniformis JF-22 to Control Meloidogyne incognita and Its Effect on Tomato Rhizosphere Microbial Community. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.863341
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.