Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

  • Newes E
  • Inman D
  • Bush B
N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Biofuels are promoted in the United States through aggressive legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007). Meeting such large volumetric targets has prompted an unprecedented increase in funding for biofuels research. Language in the EISA legislation limits the amount of renewable fuel derived from starch-based feedstocks (which are already established and feed the commercially viable ethanol industry in the United States); therefore, much of the current research is focused on producing ethanol—but from cellulosic feedstocks. These feedstocks, such as agricultural and forestry residues, perennial grasses, woody crops, and municipal solid wastes, are advantageous because they do not necessarily compete directly with food, feed, and fiber production and are envisaged to require fewer inputs (e.g., water, nutrients, and land) as compared to corn and other commodity crops. In order to help propel the biofuels industry in general and the cellulosic ethanol industry in particular, the U.S. government has enacted subsidies, fixed capital investment grants, loan guarantees, vehicle choice credits, and aggressive corporate average fuel economy standards as incentives. However, the effect of these policies on the cellulosic ethanol industry over time is not well understood. Policies such as those enacted in the United States, that are intended to incentivize the industry and promote industrial expansion, can have profound long-term effects on growth and industry takeoff as well as interact with other policies in unforeseen ways (both negative and positive). Qualifying the relative efficacies of incentive strategies could potentially lead to faster industry growth as well as optimize the government’s investment in policies to promote renewable fuels. The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform (isee systems, 2010) to model the entire biomass-to-biofuels supply chain. Key components of the BSM are shown in Figure 1. In addition to describing the underpinnings of this model, we will share insights that have been gleaned from a myriad of scenario- and policy-driven model runs. These insights will focus on how roadblocks, bottlenecks, and incentives all work in concert to have profound effects on the future of the industry.

Cite

CITATION STYLE

APA

Newes, E., Inman, D., & Bush, B. (2011). Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling. In Economic Effects of Biofuel Production. InTech. https://doi.org/10.5772/17090

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free