Some acetic acid bacteria have been shown to produce large amounts of glyceric acid (GA) from glycerol, which is a by-product of biodiesel fuel (BDF) production. Previously, a Gluconobacter strain was found that produced decreased amounts of GA from glycerol in the presence of methanol, a major ingredient of raw glycerol derived from the BDF industry. Thus, a comparative transcriptome analysis of Gluconobacter frateurii NBRC103465 was performed to investigate changes in gene expression during GA production from glycerol in the presence of methanol. Cells grown with methanol showed upregulated expression of a class III alcohol dehydrogenase homolog (adhCGf) and decreased GA production. adhCGf was cloned and expressed heterologously in Escherichia coli, and the presence of an additional protein with an approximate molecular mass of 39 kDa in the cytosol of the recombinant E. coli cells was identified by SDS-PAGE. Activity measurements of the cytosol revealed that the translational product of adhCGf exhibited formaldehyde dehydrogenase activity in the presence of nicotinamide adenine dinucleotide and glutathione. Gluconobacter frateurii cells grown in 1% methanol-containing glycerol were found to have fivefold higher formaldehyde dehydrogenase activity than cells grown without methanol, suggesting that adhCGf in G. frateurii cells functions in the dissimilation of methanol-derived formaldehyde. ©2013 by Japan Oil Chemists' Society.
CITATION STYLE
Sato, S., Morita, N., Kitamoto, D., & Habe, H. (2013). Expression and characterization of a class III alcohol dehydrogenase gene from Gluconobacter frateurii in the presence of methanol during glyceric acid production from glycerol. Journal of Oleo Science, 62(10), 835–842. https://doi.org/10.5650/jos.62.835
Mendeley helps you to discover research relevant for your work.