Abstract
Cationic 99mTc-agents like 99mTc-hexakis-2- methoxyisobutyl isonitrile (99mTc-MIBI) cannot be used for brain imaging because they do not enter the brain as readily as some uncharged 99mTc-compounds. The mechanism by which cationic 99mTc- agents are transported across the blood-brain barrier (BBB) remains unclear. We explored 99mTc-MIBI transport by in situ mouse brain perfusion to determine the influence of BBB features like the ATP-binding cassette transporters (Abcb1/P-glycoprotein (P-gp), Abcc1/Mrp1, and Abcg2/Bcrp), organic cation transporters (Slc22a1-3/Oct1-3), the transmembrane potential and the dipole membrane potential. P-gp reduced 99mTc-MIBI transport across the BBB of P-gp-deficient mice 2.2-fold, as confirmed by PSC833 and GF120918 inhibition. Paradoxically verapamil decreased its transport '0.6-fold'. Reducing the BBB dipole membrane potential with tetraphenylborate or phloretin increased 99mTc-MIBI transport about 12- and 20-fold, respectively. Guanidine, diphenhydramine, and carnitine significantly decreased 99mTc-MIBI transport, but tetraethylammonium did not. 99mTc-MIBI transport at the BBB is restricted by P-gp but not by Mrp1 or Bcrp. Some organic cations reduced the influx of 99mTc-MIBI into the brain independently of Oct1, 2 and 3, but this could be due to their effect on another cation transporter. The membrane dipole potential of the luminal BBB membrane appeared to be the main factor restricting 99mTc-MIBI permeability. © 2008 The Authors.
Author supplied keywords
Cite
CITATION STYLE
Cattelotte, J., Tournier, N., Rizzo-Padoin, N., Schinkel, A. H., Scherrmann, J. M., & Cisternino, S. (2009). Changes in dipole membrane potential at the mouse blood-brain barrier enhance the transport of 99mTechnetium Sestamibi more than inhibiting Abcb1, Abcc1, or Abcg2. Journal of Neurochemistry, 108(3), 767–775. https://doi.org/10.1111/j.1471-4159.2008.05832.x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.