Partial hydration of organic compounds can be achieved by high-pressure crystallization. This has been demonstrated for the high-nitrogen-content compound 6-chloro-1,2,3,4-tetrazolo[1,5-b]pyridazine (C4H2N5Cl), which becomes partly hydrated by isochoric crystallizations below 0.15GPa. This hydrate, C4H2N5Cl·xH2O, is isostructural with the ambient-pressure phase α of C4H2N5Cl, but the crystal volume is somewhat larger than that of the anhydrate. At 0.20GPa, the α-C4H2N5Cl anhydrate phase transforms abruptly into a new higher-symmetry phase, α' the transformation is clearly visible due to a strong contraction of the crystals. The hydrate α-C4H2N5Cl·xH2O can also be isothermally compressed up to 0.30GPa before transforming to the α'-C4H2N5Cl·xH2O phase. The isochoric recrystallization of C4H2N5Cl above 0.18GPa yields a new anhydrous phase β, which, on releasing pressure, transforms back to the α phase below 0.15GPa. The structural transition from the α to the β phase is destructive for the single crystal and involves a large volume drop and significant elongation of all the shortest intermolecular distances which are the CH⋯N and CH⋯Cl hydrogen bonds, as well as the N⋯N contacts. The α-to-α' phase transition increases the crystal symmetry in the subgroup relation; however, there are no structural nor symmetry relations between phases α and β.
CITATION STYLE
Olejniczak, A., Katrusiak, A., Podsiadlo, M., & Katrusiak, A. (2022). Stochastic hydration of a high-nitrogen-content molecular compound recrystallized under pressure. IUCrJ, 9, 49–54. https://doi.org/10.1107/S2052252521010381
Mendeley helps you to discover research relevant for your work.