Abstract
Background: The utility of risk stratification following an emergency medical admission has been debated. We have examined the predictability of outcomes, from a database of all emergency admissions to St James' Hospital, Dublin, over a six year period (2005-2010). Methods: Analysis was performed using the hospital in-patient enquiry system, linked to the patient administration system and laboratory data. The utility of a fractional polynomial laboratory only model to predict 30-day in-hospital mortality was determined. Results: The AUROC for the laboratory parameters to predict a 30 day death was 0.90 (95% CI 0.89, 0.90) in the 2002 - 2010 derivation dataset and was 0.88 (95% CI 0.86, 0.90) in the 2011 validation set. The addition of co-morbidity measures did not improve the model prediction (0.89 : 95% CI 0.88 - 0.89). Conclusion: A fractional polynomial laboratory only model can reliably predict 30-day hospital mortality following an emergency medical admission, potentially allowing resources to be risk focused and patients to be prioritised © 2012 Rila Publications Ltd.
Cite
CITATION STYLE
O’Sullivan, E., Callely, E., O’Riordan, D., Bennett, K., & Silke, B. (2012). Predicting outcomes in emergency medical admissions - Role of laboratory data and co-morbidity. Acute Medicine, 11(2), 59–65. https://doi.org/10.52964/amja.0547
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.