Cobalt-catalyzed highly enantioselective hydrogenation of α,β-unsaturated carboxylic acids

81Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Asymmetric hydrogenation of α,β-unsaturated acids catalyzed by noble metals has been well established, whereas, the asymmetric hydrogenation with earth-abundant-metal was rarely reported. Here, we describe a cobalt-catalyzed asymmetric hydrogenation of α,β-unsaturated carboxylic acids. By using chiral cobalt catalyst bearing electron-donating diphosphine ligand, high activity (up to 1860 TON) and excellent enantioselectivity (up to >99% ee) are observed. Furthermore, the cobalt-catalyzed asymmetric hydrogenation is successfully applied to a broad spectrum of α,β-unsaturated carboxylic acids, such as various α-aryl and α-alkyl cinnamic acid derivatives, α-oxy-functionalized α,β-unsaturated acids, α-substituted acrylic acids and heterocyclic α,β-unsaturated acids (30 examples). The synthetic utility of the protocol is highlighted by the synthesis of key intermediates for chiral drugs (6 cases). Preliminary mechanistic studies reveal that the carboxy group may be involved in the control of the reactivity and enantioselectivity through an interaction with the metal centre.

Cite

CITATION STYLE

APA

Du, X., Xiao, Y., Huang, J. M., Zhang, Y., Duan, Y. N., Wang, H., … Zhang, X. (2020). Cobalt-catalyzed highly enantioselective hydrogenation of α,β-unsaturated carboxylic acids. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17057-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free