The European CORINE land cover mapping scheme is a standardized classification system with 44 land cover and land use classes. It is used by the European Environment Agency to report large-scale land cover change with a minimum mapping unit of 5 ha every six years and operationally mapped by its member states. The most commonly applied method to map CORINE land cover change is by visual interpretation of optical/near-infrared satellite imagery. The Sentinel-1A satellite carries a C-band Synthetic Aperture Radar (SAR) and was launched in 2014 by the European Space Agency as the first operational Copernicus mission. This study is the first investigation of Sentinel-1A for CORINE land cover mapping. Two of the first Sentinel-1A images acquired during its ramp-up phase in May and December 2014 over Thuringia in Germany are analysed. 27 hybrid level 2/3 CORINE classes are defined. 17 of these were present at the study site and classified based on a stratified random sample of training pixels from the polygon-eroded CORINE 2006 map. Sentinel-1A logarithmic radar backscatter at HH and HV polarisation (May acquisition), VV and VH polarisation (December acquisition), and the HH image texture are used as input bands to the classification. In addition, a Digital Terrain Model (DTM), a Canopy Height Model (CHM) and slope and aspect maps from the Shuttle Radar Topography Mission (SRTM) are used as input bands to account for geomorphological features of the landscape. In future, elevation data will be delivered for areas with sufficiently high coherence from the Sentinel-1A Interferometric Wide-Swath Mode itself. When augmented by elevation data from radar interferometry, Sentinel-1A is able to discriminate several CORINE land cover classes, making it useful for monitoring of cloud-covered regions. A bistatic Sentinel-1 Convoy mission would enable single-pass interferometric acquisitions without temporal decorrelation.
CITATION STYLE
Balzter, H., Cole, B., Thiel, C., & Schmullius, C. (2015). Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using random forests. Remote Sensing, 7(11), 14876–14898. https://doi.org/10.3390/rs71114876
Mendeley helps you to discover research relevant for your work.