Today's display industry faces transistor-level challenges similar to those of complementary metal-oxide semiconductor (CMOS) metal-oxide semiconductor field-effect transistors (MOSFETs) in the mid-1990s. Learnings from MOSFETs inform the display industry's response to the limitations of silicon-based thin-film transistors (TFTs). Improvements sustaining Moore's Law drove the need to rethink MOSFET materials and structures. The display industry needs fundamental innovation at the device level. New thin-film devices enable an inflection point in the use of displays, just as fin field-effect transistor (FinFET) defined the inflection point in CMOS in the 2000s. This paper outlines two innovations in thin-film device technology that offers improvement in image quality and power consumption of flat panel displays: amorphous metal gate TFTs (AMeTFTs) and amorphous metal nonlinear resistors (AMNRs). Linked through a single core material set based on mass-producible, thin-film amorphous metals, these two innovations create near- and long-term roadmaps simplifying the production of high-image quality, low-power consumption displays on glass (now) and plastic (future). In particular, the field-effect mobility of indium gallium zinc oxide (IGZO) AMeTFTs (55–72 cm2/Vs) exceeds that of IGZO TFTs developed by existing display manufacturers without the need for atomic layer deposition or vertical stacking of heterostructure semiconductor films, making AMeTFTs a natural choice for the new G8.5–G8.7 fabs targeting IGZO backplanes.
CITATION STYLE
Zeumault, A., Mendez, J. E., & Brewer, J. (2024). Innovations in thin-film electronics for the new generation of displays. Journal of the Society for Information Display, 32(4), 121–135. https://doi.org/10.1002/jsid.1274
Mendeley helps you to discover research relevant for your work.