In this Letter, we experimentally investigate the impact of gate geometry on forward operation of Schottky-gate p-GaN high electron mobility transistors (HEMTs). In particular, we analyze devices with changing gate-metal/p-GaN junction area and p-GaN/AlGaN/GaN heterostructure area in the linear regime. These devices exhibit unique threshold voltage and subthreshold swing scaling dependence with gate geometry that is in contrast with classic field-effect transistors. On the other hand, peak transconductance and ON resistance are found to scale classically. We find that these results arise from the fact that with a Schottky contact to the p-GaN layer, under steady-state conditions, the p-GaN layer voltage is set by current continuity across the gate stack. Furthermore, a detailed scaling study of the gate current reveals that current flow across the p-GaN/AlGaN/GaN heterostructure is not uniform - instead, it preferentially flows through the ungated portion of the p-GaN layer. Our study concludes that in Schottky-type p-GaN gate HEMTs, the respective areas of two junctions constitute an additional design degree of freedom to fine-tune device performance.
CITATION STYLE
Lee, E. S., Joh, J., Lee, D. S., & Del Alamo, J. A. (2022). Gate-geometry dependence of electrical characteristics of p-GaN gate HEMTs. Applied Physics Letters, 120(8). https://doi.org/10.1063/5.0084123
Mendeley helps you to discover research relevant for your work.