Sulfonylurea stimulation of insulin secretion

433Citations
Citations of this article
443Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sulfonylureas are widely used to treat type 2 diabetes because they stimulate insulin secretion from pancreatic β-cells. They primarily act by binding to the SUR subunit of the ATP-sensitive potassium (KATP) channel and inducing channel closure. However, the channel is still able to open to a limited extent when the drug is bound, so that high-affinity sulfonylurea inhibition is not complete, even at saturating drug concentrations. KATP channels are also found in cardiac, skeletal, and smooth muscle, but in these tissues are composed of different SUR subunits that confer different drug sensitivities. Thus tolbutamide and gliclazide block channels containing SUR1 (β-cell type), but not SUR2 (cardiac, smooth muscle types), whereas glibenclamide, glimepiride, repaglinide, and meglitinide block both types of channels. This difference has been exploited to determine residues contributing to the sulfonylurea-binding site. Sulfonylurea block is decreased by mutations or agents (e.g., phosphatidylinositol bisphosphate) that increase KATP channel open probability. We now propose a kinetic model that explains this effect in terms of changes in the channel open probability and in the transduction between the drug-binding site and the channel gate. We also clarify the mechanism by which MgADP produces an apparent increase of sulfonylurea efficacy on channels containing SUR1.

Cite

CITATION STYLE

APA

Proks, P., Reimann, F., Green, N., Gribble, F., & Ashcroft, F. (2002). Sulfonylurea stimulation of insulin secretion. In Diabetes (Vol. 51). American Diabetes Association Inc. https://doi.org/10.2337/diabetes.51.2007.s368

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free