We investigated the anticancer potential of Ag-doped (0.5-5%) anatase TiO2 NPs. Characterization study showed that dopant Ag was well-distributed on the surface of host TiO2 NPs. Size (15 nm to 9 nm) and band gap energy (3.32 eV to 3.15 eV) of TiO2 NPs were decreases with increasing the concentration of Ag dopant. Biological studies demonstrated that Ag-doped TiO2 NP-induced cytotoxicity and apoptosis in human liver cancer (HepG2) cells. The toxic intensity of TiO2 NPs was increases with increasing the amount of Ag-doping. The Ag-doped TiO2 NPs further found to provoke reactive oxygen species (ROS) generation and antioxidants depletion. Toxicity induced by Ag-doped TiO2 NPs in HepG2 cells was efficiently abrogated by antioxidant N-acetyl-cysteine (ROS scavenger). We also found that Ag-doped TiO2 NPs induced cytotoxicity and oxidative stress in human lung (A549) and breast (MCF-7) cancer cells. Interestingly, Ag-doped TiO2 NPs did not cause much toxicity to normal cells such as primary rat hepatocytes and human lung fibroblasts. Overall, we found that Ag-doped TiO2 NPs have potential to selectively kill cancer cells while sparing normal cells. This study warranted further research on anticancer potential of Ag-doped TiO2 NPs in various types of cancer cells and in vivo models.
CITATION STYLE
Ahamed, M., Khan, M. A. M., Akhtar, M. J., Alhadlaq, H. A., & Alshamsan, A. (2017). Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-17559-9
Mendeley helps you to discover research relevant for your work.