A Novel Image Recognition Method Based on DenseNet and DPRN

29Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

Image recognition is one of the important branches of computer vision, which has important theoretical and practical significance. For the insufficient use of features, the single type of convolution kernel and the incomplete network optimization problems in densely connected networks (DenseNet), a novel image recognition method based on DenseNet and deep pyramidal residual networks (DPRN) is proposed in this paper. In the proposed method, a new residual unit based on DPRN is designed, and the idea of a pyramid residual unit is introduced, which makes the input greater than the output. Then, a module based on dilated convolution is designed for parallel feature extraction. Finally, the designed module is fused with DenseNet in order to construct the image recognition model. This model not only overcomes some of the existing problems in DenseNet, but also has the same general applicability as DensenNet. The CIFAR10 and CIFAR100 are selected to prove the effectiveness of the proposed method. The experiment results show that the proposed method can effectively reuse features and has obtained accuracy rates of 83.98 and 51.19%, respectively. It is an effective method for dealing with images in different fields.

Cite

CITATION STYLE

APA

Yin, L., Hong, P., Zheng, G., Chen, H., & Deng, W. (2022). A Novel Image Recognition Method Based on DenseNet and DPRN. Applied Sciences (Switzerland), 12(9). https://doi.org/10.3390/app12094232

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free