Abstract
A highly efficient AC-DC converter for small wind power generation systems using a brushless DC generator (BLDCG) is presented in this paper. The market standard AC-DC converter for a BLDCG consists of a three-phase diode rectifier and a boost DC-DC converter, which has an IGBT and a fast recovery diode (FRD). This kind of two-stage solution basically suffers from a large amount of conduction loss and the efficiency greatly decreases under a light load, or at a low current, because of the switching devices with a P-N junction. In order to overcome this low efficiency, especially at a low current, a three-phase bridgeless converter consisting of three upper side FRDs and three lower side Super Junction FETs is presented. In the overall operating speed region, including the cut-in speed, the efficiency of the proposed converter is improved by up to 99%. Such a remarkable result is validated and compared with conventional solutions by calculating the power loss based on I-V curves and the switching loss data of the adopted commercial switches and the current waveforms obtained through PSIM simulations.
Author supplied keywords
Cite
CITATION STYLE
Ryu, H. M. (2011). Highly efficient AC-DC converter for small wind power generators. Journal of Power Electronics, 11(2), 188–193. https://doi.org/10.6113/JPE.2011.11.2.188
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.