Optimizing kesterite solar cells from Cu2ZnSnS4to Cu2CdGe(S,Se)4

33Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Kesterite solar cells, based on the prototypical absorber material Cu2ZnSnS4(CZTS), are cheap, nontoxic, and chemically stable, thus rendering them promising, beyond-Si photovoltaic technologies. Their efficiencies, however, are limited by the formation of defects that decrease the short-circuit current by creating deep traps where nonradiative recombination of photoexcited charge carriers occursviathe Shockley-Read-Hall mechanism. To suppress the formation of these defects, specifically the most deleterious 2CuZn+ SnZnantisite cluster, we devised an ion substitution strategy involving complete Cd- and Ge-substitution and partial selenization, ultimately arriving at the optimal composition, Cu2CdGeS3Se (CCdGSSe). Using density functional theory andab initiothermodynamics, we predict that complete Cd- and Ge-substitution leads to a 125% increase in the formation energy of the deep-trap-inducing 2CuCd+ GeCd. Additionally, 25% selenization optimizes the predicted band gap (1.43-1.47 eV, as calculated from a hybrid functional) with respect to the Shockley-Queisser limit. In addition to providing a practical and novel ion substitution strategy, we also elucidate the mechanisms of defect suppression and promotion by Ge and Se, highlighting the key role of the inert pair effect and metal-chalcogen bond covalency, respectively. Due to its ideal thermodynamic and electronic characteristics, CCdGSSe should reinvigorate research on kesterite-based solar cells, optimizing the rich materials space afforded by ion substitution and post-quinary compositions.

Cite

CITATION STYLE

APA

Wexler, R. B., Gautam, G. S., & Carter, E. A. (2021). Optimizing kesterite solar cells from Cu2ZnSnS4to Cu2CdGe(S,Se)4. Journal of Materials Chemistry A, 9(15), 9882–9897. https://doi.org/10.1039/d0ta11603c

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free