Cyber Security against Intrusion Detection Using Ensemble-Based Approaches

10Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The attacks of cyber are rapidly increasing due to advanced techniques applied by hackers. Furthermore, cyber security is demanding day by day, as cybercriminals are performing cyberattacks in this digital world. So, designing privacy and security measurements for IoT-based systems is necessary for secure network. Although various techniques of machine learning are applied to achieve the goal of cyber security, but still a lot of work is needed against intrusion detection. Recently, the concept of hybrid learning gives more attention to information security specialists for further improvement against cyber threats. In the proposed framework, a hybrid method of swarm intelligence and evolutionary for feature selection, namely, PSO-GA (PSO-based GA) is applied on dataset named CICIDS-2017 before training the model. The model is evaluated using ELM-BA based on bootstrap resampling to increase the reliability of ELM. This work achieved highest accuracy of 100% on PortScan, Sql injection, and brute force attack, which shows that the proposed model can be employed effectively in cybersecurity applications.

Cite

CITATION STYLE

APA

Alatawi, M. N., Alsubaie, N., Ullah Khan, H., Sadad, T., Alwageed, H. S., Ali, S., & Zada, I. (2023). Cyber Security against Intrusion Detection Using Ensemble-Based Approaches. Security and Communication Networks, 2023. https://doi.org/10.1155/2023/8048311

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free