Box-particle probability hypothesis density filtering

32Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper develops a novel approach for multitarget tracking, called box-particle probability hypothesis density filter (box-PHD filter). The approach is able to track multiple targets and estimates the unknown number of targets. Furthermore, it is capable of dealing with three sources of uncertainty: stochastic, set-theoretic, and data association uncertainty. The box-PHD filter reduces the number of particles significantly, which improves the runtime considerably. The small number of box-particles makes this approach attractive for distributed inference, especially when particles have to be shared over networks. A box-particle is a random sample that occupies a small and controllable rectangular region of non-zero volume. Manipulation of boxes utilizes methods from the field of interval analysis. The theoretical derivation of the box-PHD filter is presented followed by a comparative analysis with a standard sequential Monte Carlo (SMC) version of the PHD filter. To measure the performance objectively three measures are used: inclusion, volume, and the optimum subpattern assignment (OSPA) metric. Our studies suggest that the box-PHD filter reaches similar accuracy results, like an SMC-PHD filter but with considerably less computational costs. Furthermore, we can show that in the presence of strongly biased measurement the box-PHD filter even outperforms the classical SMC-PHD filter.

Cite

CITATION STYLE

APA

Schikora, M., Gning, A., Mihaylova, L., Cremers, D., & Koch, W. (2014). Box-particle probability hypothesis density filtering. IEEE Transactions on Aerospace and Electronic Systems, 50(3), 1660–1672. https://doi.org/10.1109/TAES.2014.120238

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free