As the computing resources and the battery capacity of mobile devices are usually limited, it is a feasible solution to offload the computation-intensive tasks generated by mobile devices to edge servers (ESs) in mobile edge computing (MEC). In this article, we study the multi-user multi-server task offloading problem in MEC systems, where all users compete for the limited communication resources and computing resources. We formulate the offloading problem with the goal of minimizing the cost of the users and maximizing the profits of the ESs. We propose a hierarchical EETORP (Economic and Efficient Task Offloading and Resource Purchasing) framework that includes a two-stage joint optimization process. Then we prove that the problem is NP-complete. For the first stage, we formulate the offloading problem as a multi-channel access game (MCA-Game) and prove theoretically the existence of at least one Nash equilibrium strategy in MCA-Game. Next, we propose a game-based multi-channel access (GMCA) algorithm to obtain the Nash equilibrium strategy and analyze the performance guarantee of the obtained offloading strategy in the worst case. For the second stage, we model the computing resource allocation between the users and ESs by Stackelberg game theory, and reformulate the problem as a resource pricing and purchasing game (PAP-Game). We prove theoretically the property of incentive compatibility and the existence of Stackelberg equilibrium. A game-based pricing and purchasing (GPAP) algorithm is proposed. Finally, a series of both parameter analysis and comparison experiments are carried out, which validate the convergence and effectiveness of the GMCA algorithm and GPAP algorithm.
CITATION STYLE
Chen, Y., Zhao, J., Hu, J., Wan, S., & Huang, J. (2024). Distributed Task Offloading and Resource Purchasing in NOMA-Enabled Mobile Edge Computing: Hierarchical Game Theoretical Approaches. ACM Transactions on Embedded Computing Systems, 23(1). https://doi.org/10.1145/3597023
Mendeley helps you to discover research relevant for your work.