Strategies for online inference of model-based clustering in large and growing networks

21Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

In this paper we adapt online estimation strategies to perform model-based clustering on large networks. Our work focuses on two algorithms, the first based on the SAEM algorithm, and the second on variational methods. These two strategies are compared with existing approaches on simulated and real data. We use the method to decipher the connexion structure of the political websphere during the US political campaign in 2008. We show that our online EM-based algorithms offer a good trade-off between precision and speed, when estimating parameters for mixture distributions in the context of random graphs. © 2011 Institute ol Mathematical Statistics, 2010.

Cite

CITATION STYLE

APA

Zanghi, H., Picard, F., Miele, V., & Ambroise, C. (2010). Strategies for online inference of model-based clustering in large and growing networks. Annals of Applied Statistics, 4(2), 687–714. https://doi.org/10.1214/10-AOAS359

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free