Synthesis of amylose by potato D-enzyme

7Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

THE synthesis of the chain-forming α-1: 4-bonds of potato starch (amylose + amylopectin) has for long been ascribed to phosphorylase acting on glucose-1-phosphate and a preformed starch-like primer1. We now report the synthesis of amylose-like material by another enzyme system from potato. This synthesis makes use of D-enzyme, discovered in 1953 by Peat and co-workers2. D-enzyme catalyses the reversible disproportionation of maltodextrins, the glucose oligosaccharides containing the α-1: 4-linkage. For example, maltotriose is acted on to give, as the first products of reaction, glucose and malto-pentaose, and at equilibrium glucose and a whole series of maltodextrins are present. However, with maltotriose as the initial substrate, none of the synthetic oligosaccharides is of sufficient length to form a coloured complex with iodine. The minimum length for colour formation is at least 12 glucose units3. Incubation of D-enzyme with a maltodextrin and glucose lowers the average length of the polymer because of transfer of some of its glucose residues to the added glucose. It was realized that a reversal of this procedure, the removal of glucose, should increase the length of the polymers and might ultimately result in the synthesis from a small maltodextrin molecule of an iodine-staining, amylose-like polysaccharide. If, in addition to D-enzyme, the potato is equipped with such a glucose-removing enzyme system, then it is presumably capable of synthesizing amylose by a route other than that provided by phosphorylase. A suitable glucose-removing system is hexokinase and adenosine tri-phosphate, and hexokinase is known to be in the potato4. This will convert glucose into glucose-6-phosphate, and D-enzyme does not transfer chain segments from maltodextrins to the sugar phosphate as it does to glucose5. The system (maltodextrin + D-enzyme + hexokinase + adenosine triphosphate) should therefore bring about amylose synthesis. This has been achieved. © 1959 Nature Publishing Group.

Cite

CITATION STYLE

APA

Walker, G. J., & Whelan, W. J. (1959). Synthesis of amylose by potato D-enzyme. Nature, 183(4653), 46. https://doi.org/10.1038/183046a0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free