Effectiveness of conceptual change strategies in science education: A meta-analysis

7Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

There is extensive literature focusing on students' misconceptions in various subject domains. Several conceptual change approaches have been trying to understand how conceptual change occurs to help learners handle these misconceptions. This meta-analysis aims to integrate studies investigating the effectiveness of three types of conceptual change strategy: cognitive conflict, cognitive bridging, and ontological category shift in science learning. We conducted a random-effects meta-analysis to calculate an overall effect size in Hedges' g with a sample of 218 primary studies, including 18,051 students. Our analyses resulted in a large overall effect size (g = 1.10, 95% CI [1.01, 1.19], k = 218, p < 0.001). We also performed a robust Bayesian meta-analysis to calculate an adjusted effect size, which specified a large effect (adjusted g = 0.93, 95% CI [0.68, 1.07], k = 218). Results are also consistent across the conceptual change strategies of cognitive conflict (g = 1.10, 95% CI [0.99, 1.21], k = 150, p < 0.001), cognitive bridging (g = 1.06, 95% CI [0.84, 1.28], k = 30, p < 0.001), and ontological category shift (g = 0.88, 95% CI [0.50, 1.26], k = 9, p < 0.001). However, a wide-ranging prediction interval [0.19, 2.38] points out a high level of heterogeneity in the distribution of effect sizes. Thus, we investigated the moderating effects of several variables using simple and multiple meta-regression. The final meta-regression model we created explained 35% of overall heterogeneity. This meta-analysis provides robust evidence that conceptual change strategies significantly enhance students' learning in science.

Cite

CITATION STYLE

APA

Pacaci, C., Ustun, U., & Ozdemir, O. F. (2024). Effectiveness of conceptual change strategies in science education: A meta-analysis. Journal of Research in Science Teaching, 61(6), 1263–1325. https://doi.org/10.1002/tea.21887

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free