Effects of class purity of training patch on classification performance of crop classification with convolutional neural network

10Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

As the performance of supervised classification using convolutional neural networks (CNNs) are affected significantly by training patches, it is necessary to analyze the effects of the information content of training patches in patch-based classification. The objective of this study is to quantitatively investigate the effects of class purity of a training patch on performance of crop classification. Here, class purity that refers to a degree of compositional homogeneity of classes within a training patch is considered as a primary factor for the quantification of information conveyed by training patches. New quantitative indices for class homogeneity and variations of local class homogeneity over the study area are presented to characterize the spatial homogeneity of the study area. Crop classification using 2D-CNN was conducted in two regions (Anbandegi in Korea and Illinois in United States) with distinctive spatial distributions of crops and class homogeneity over the area to highlight the effect of class purity of a training patch. In the Anbandegi region with high class homogeneity, superior classification accuracy was obtained when using large size training patches with high class purity (7.1%p improvement in overall accuracy over classification with the smallest patch size and the lowest class purity). Training patches with high class purity could yield a better identification of homogenous crop parcels. In contrast, using small size training patches with low class purity yielded the highest classification accuracy in the Illinois region with low class homogeneity (19.8%p improvement in overall accuracy over classification with the largest patch size and the highest class purity). Training patches with low class purity could provide useful information for the identification of diverse crop parcels. The results indicate that training samples in patch-based classification should be selected based on the class purity that reflects the local class homogeneity of the study area.

Cite

CITATION STYLE

APA

Park, S., & Park, N. W. (2020). Effects of class purity of training patch on classification performance of crop classification with convolutional neural network. Applied Sciences (Switzerland), 10(11). https://doi.org/10.3390/app10113773

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free