Monocular vision-based underwater object detection

65Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

In this paper, we propose an underwater object detection method using monocular vision sensors. In addition to commonly used visual features such as color and intensity, we investigate the potential of underwater object detection using light transmission information. The global contrast of various features is used to initially identify the region of interest (ROI), which is then filtered by the image segmentation method, producing the final underwater object detection results. We test the performance of our method with diverse underwater datasets. Samples of the datasets are acquired by a monocular camera with different qualities (such as resolution and focal length) and setups (viewing distance, viewing angle, and optical environment). It is demonstrated that our ROI detection method is necessary and can largely remove the background noise and significantly increase the accuracy of our underwater object detection method.

Cite

CITATION STYLE

APA

Chen, Z., Zhang, Z., Dai, F., Bu, Y., & Wang, H. (2017). Monocular vision-based underwater object detection. Sensors (Switzerland), 17(8). https://doi.org/10.3390/s17081784

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free