DRAMSys: A flexible DRAM subsystem design space exploration framework

55Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

In systems ranging from mobile devices to servers, Dynamic Random Access Memories (DRAM) have a big impact on performance and contributes a significant part of the total consumed power. Conventional DDR3-based solutions are stretched thin as their maximum bandwidth is limited by the I/O count and interface speed. As new solutions are coming onto the market (JEDEC DDR4, JEDEC WIDE I/O, Micron's hybrid memory cube: HMC or JEDEC's high bandwidth memory: HBM) it is critical to evaluate the performance of these solutions and assess their suitability for specific applications. Furthermore, in systems with 3D stacking, the challenges of high power densities and thermal dissipation are exacerbated. It is crucial to have a flexible and holistic DRAM subsystem framework for exhaustive design space explorations, which can handle all this different types of memories, as well as the aspects of performance, power and temperature.

Cite

CITATION STYLE

APA

Jung, M., Weis, C., & Wehn, N. (2015). DRAMSys: A flexible DRAM subsystem design space exploration framework. IPSJ Transactions on System LSI Design Methodology, 8, 63–74. https://doi.org/10.2197/ipsjtsldm.8.63

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free