CREB and neuronal selection for memory trace

30Citations
Citations of this article
101Readers
Mendeley users who have this article in their library.

Abstract

Despite considerable progress over the past several decades, our understanding of the mechanisms underlying memory encoding, storage, and expression in a complex neural network are far from complete. In particular, how some neurons rather than others are selectively engaged to encode memory remains largely unknown. Using virus-mediated gene delivery into a small subset of neurons in a given network, molecular imaging of neuronal activity, pharmacological perturbation of specific neurons' activity and animal behavior assays, recent studies have begun to provide insight into molecular and cellular mechanisms responsible for the selection of neurons for inclusion into a memory trace. Here, we focus on a review of recent findings supporting the hypothesis that the level of the transcription factor CREB (cAMP/Ca2+-response element binding protein) is a key factor governing which neurons are recruited to a given memory trace. These recent findings open a new perspective on memory trace at the neural circuit level and also raise many important questions. Future studies employing more advanced neurobiological techniques for targeting defined populations of neurons and manipulating their activity in time and space in a complex neural network will give answers to these newly emerging questions and extend our understanding of the neurobiological basis of the memory trace. © 2013 Kim, Kwon, Kim and Han.

Cite

CITATION STYLE

APA

Kim, J., Kwon, J. T., Kim, H. S., & Han, J. H. (2013, March 3). CREB and neuronal selection for memory trace. Frontiers in Neural Circuits. https://doi.org/10.3389/fncir.2013.00044

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free