Aging is a mysterious process, not only controlled genetically but also subject to random damage that can accumulate over time. While DNA damage and subsequent mutation in somatic cells were first proposed as drivers of aging more than 60 years ago, whether and to what degree these processes shape the neuronal genome in the human brain could not be tested until recent technological breakthroughs related to single-cell whole-genome sequencing. Indeed, somatic single-nucleotide variants (SNVs) increase with age in the human brain, in a somewhat stochastic process that may nonetheless be controlled by underlying genetic programs. Evidence from the literature suggests that in addition to demonstrated increases in somatic SNVs during aging in normal brains, somatic mutation may also play a role in late-onset, sporadic neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. In this review, we will discuss somatic mutation in the human brain, mechanisms by which somatic mutations occur and can be controlled, and how this process can impact human health.
CITATION STYLE
Lodato, M. A., & Walsh, C. A. (2019, November 21). Genome aging: somatic mutation in the brain links age-related decline with disease and nominates pathogenic mechanisms. Human Molecular Genetics. Oxford University Press. https://doi.org/10.1093/hmg/ddz191
Mendeley helps you to discover research relevant for your work.