Response of a stoichiometrically imbalanced ecosystem to manipulation of nutrient supplies and ratios

17Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

Abstract

Cuatro Ciénegas Basin (CCB) is a desert ecosystem that hosts a large diversity of water bodies. Many surface waters in this basin have imbalanced nitrogen (N) to phosphorus (P) stoichiometry (total N:P > 100 by atoms), where P is likely to be a limiting nutrient. To investigate the effects of nutrient stoichiometry on planktonic and sediment ecosystem components and processes, we conducted a replicated in situ mesocosm experiment in Lagunita, a shallow pond located in the southwest region of the basin. Inorganic N and P were periodically added to mesocosms under three different N:P regimes (P only, N:P = 16 and N:P = 75) while the control mesocosms were left unamended. After three weeks of fertilization, more than two thirds of the applied P was immobilized into seston or sediment. The rapid uptake of P significantly decreased biomass C:P and N:P ratios, supporting the hypothesis that Lagunita is P-limited. Meanwhile, simultaneous N and P enrichment significantly enhanced planktonic growth, increasing total planktonic biomass by more than 2-fold compared to the unenriched control. With up to 76% of added N sequestered into the seston, it is suspected that the Lagunita microbial community also experienced strong N-limitation. However, when N and P were applied at N:P = 75, the microbes remained in a P-limitation state as in the untreated control. Two weeks after the last fertilizer application, seston C:P and N:P ratios returned to initial levels but chlorophyll a and seston C concentrations remained elevated. Additionally, no P release from the sediment was observed in the fertilized mesocosms. Overall, this study provides evidence that Lagunita is highly sensitive to nutrient perturbation because the biota is primarily P-limited and experiences a secondary N-limitation despite its high TN:TP ratio. This study serves as a strong basis to justify the need for protection of CCB ecosystems and other low-nutrient microbedominated systems from anthropogenic inputs of both N and P.

Cite

CITATION STYLE

APA

Lee, Z. M., Steger, L., Corman, J. R., Neveu, M., Poret-Peterson, A. T., Souza, V., & Elser, J. J. (2015). Response of a stoichiometrically imbalanced ecosystem to manipulation of nutrient supplies and ratios. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0123949

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free