Abstract
High-energy Ni-rich layered oxide cathode materials such as LiNi0.8Mn0.1Co0.1O2 (NMC811) suffer from detrimental side reactions and interfacial structural instability when coupled with sulfide solid-state electrolytes in all-solid-state lithium-based batteries. To circumvent this issue, here we propose a gradient coating of the NMC811 particles with lithium oxy-thiophosphate (Li3P1+xO4S4x). Via atomic layer deposition of Li3PO4 and subsequent in situ formation of a gradient Li3P1+xO4S4x coating, a precise and conformal covering for NMC811 particles is obtained. The tailored surface structure and chemistry of NMC811 hinder the structural degradation associated with the layered-to-spinel transformation in the grain boundaries and effectively stabilize the cathode|solid electrolyte interface during cycling. Indeed, when tested in combination with an indium metal negative electrode and a Li10GeP2S12 solid electrolyte, the gradient oxy-thiophosphate-coated NCM811-based positive electrode enables the delivery of a specific discharge capacity of 128 mAh/g after almost 250 cycles at 0.178 mA/cm2 and 25 °C.
Cite
CITATION STYLE
Liang, J., Zhu, Y., Li, X., Luo, J., Deng, S., Zhao, Y., … Sun, X. (2023). A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries. Nature Communications, 14(1). https://doi.org/10.1038/s41467-022-35667-7
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.