MR Imaging Characteristics and ADC Histogram Metrics for Differentiating Molecular Subgroups of Pediatric Low-Grade Gliomas

5Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

BACKGROUND AND PURPOSE: BRAF and type 1 neurofibromatosis status are distinctive features in pediatric low-grade gliomas with prognostic and therapeutic implications. We hypothesized that DWI metrics obtained through volumetric ADC histogram analyses of pediatric low-grade gliomas at baseline would enable early detection of BRAF and type 1 neurofibromatosis status. MATERIALS AND METHODS: We retrospectively evaluated 40 pediatric patients with histologically proved pilocytic astrocytoma (n = 33), ganglioglioma (n = 4), pleomorphic xanthoastrocytoma (n = 2), and diffuse astrocytoma grade 2 (n = 1). Apart from 1 patient with type 1 neurofibromatosis who had a biopsy, 11 patients with type 1 neurofibromatosis underwent conventional MR imaging to diagnose a low-grade tumor without a biopsy. BRAF molecular analysis was performed for patients without type 1 neurofibromatosis. Eleven patients presented with BRAF V600E-mutant, 20 had BRAF-KIAA rearrangement, and 8 had BRAF wild-type tumors. Imaging studies were reviewed for location, margins, hemorrhage or calcifications, cystic components, and contrast enhancement. Histogram analysis of tumoral diffusivity was performed. RESULTS: Diffusion histogram metrics (mean, median, and 10th and 90th percentiles) but not kurtosis or skewness were different among pediatric low-grade glioma subgroups (P, .05). Diffusivity was lowest in BRAF V600E-mutant tumors (the 10th percentile reached an area under the curve of 0.9 on receiver operating characteristic analysis). There were significant differences between evaluated pediatric low-grade glioma margins and cystic components (P = .03 and P = .001, respectively). Well-defined margins were characteristic of BRAF-KIAA or wild-type BRAF rather than BRAF V600E-mutant or type 1 neurofibromatosis tumors. None of the type 1 neurofibromatosis tumors showed a cystic component. CONCLUSIONS: Imaging features of pediatric low-grade gliomas, including quantitative diffusion metrics, may assist in predicting BRAF and type 1 neurofibromatosis status, suggesting a radiologic-genetic correlation, and might enable early genetic signature characterization.

Cite

CITATION STYLE

APA

Shrot, S., Kerpel, A., Belenky, J., Lurye, M., Hoffmann, C., & Yalon, M. (2022). MR Imaging Characteristics and ADC Histogram Metrics for Differentiating Molecular Subgroups of Pediatric Low-Grade Gliomas. American Journal of Neuroradiology, 43(9), 1356–1362. https://doi.org/10.3174/ajnr.A7614

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free