BACKGROUND AND PURPOSE: BRAF and type 1 neurofibromatosis status are distinctive features in pediatric low-grade gliomas with prognostic and therapeutic implications. We hypothesized that DWI metrics obtained through volumetric ADC histogram analyses of pediatric low-grade gliomas at baseline would enable early detection of BRAF and type 1 neurofibromatosis status. MATERIALS AND METHODS: We retrospectively evaluated 40 pediatric patients with histologically proved pilocytic astrocytoma (n = 33), ganglioglioma (n = 4), pleomorphic xanthoastrocytoma (n = 2), and diffuse astrocytoma grade 2 (n = 1). Apart from 1 patient with type 1 neurofibromatosis who had a biopsy, 11 patients with type 1 neurofibromatosis underwent conventional MR imaging to diagnose a low-grade tumor without a biopsy. BRAF molecular analysis was performed for patients without type 1 neurofibromatosis. Eleven patients presented with BRAF V600E-mutant, 20 had BRAF-KIAA rearrangement, and 8 had BRAF wild-type tumors. Imaging studies were reviewed for location, margins, hemorrhage or calcifications, cystic components, and contrast enhancement. Histogram analysis of tumoral diffusivity was performed. RESULTS: Diffusion histogram metrics (mean, median, and 10th and 90th percentiles) but not kurtosis or skewness were different among pediatric low-grade glioma subgroups (P, .05). Diffusivity was lowest in BRAF V600E-mutant tumors (the 10th percentile reached an area under the curve of 0.9 on receiver operating characteristic analysis). There were significant differences between evaluated pediatric low-grade glioma margins and cystic components (P = .03 and P = .001, respectively). Well-defined margins were characteristic of BRAF-KIAA or wild-type BRAF rather than BRAF V600E-mutant or type 1 neurofibromatosis tumors. None of the type 1 neurofibromatosis tumors showed a cystic component. CONCLUSIONS: Imaging features of pediatric low-grade gliomas, including quantitative diffusion metrics, may assist in predicting BRAF and type 1 neurofibromatosis status, suggesting a radiologic-genetic correlation, and might enable early genetic signature characterization.
CITATION STYLE
Shrot, S., Kerpel, A., Belenky, J., Lurye, M., Hoffmann, C., & Yalon, M. (2022). MR Imaging Characteristics and ADC Histogram Metrics for Differentiating Molecular Subgroups of Pediatric Low-Grade Gliomas. American Journal of Neuroradiology, 43(9), 1356–1362. https://doi.org/10.3174/ajnr.A7614
Mendeley helps you to discover research relevant for your work.