The current study deals with Cr(VI) removal by nanotitania under fluorescent light and dark conditions. The equilibrium removal capacities, 85.85 and 59.4 mg of Cr(VI) g-1 of nanoparticle were noted for nanotitania interacted under light and dark conditions, respectively, at optimized conditions (pH: 7.0, contact time: 30 min, initial Cr(VI) concentration: 20 mg l-1 , nanoparticle dosage: 0.1 g l-1). Under both the conditions, the equilibrium removal data fitted well with the Langmuir isotherm model. The nanotitania followed a second-order kinetics under light condition whereas a pseudo-second-order kinetics was observed under dark condition. The surface characterization of nanotitania was carried out by zeta potential measurement and transmission electron microscope (TEM). Fourier transform infrared (FT-IR) studies carried out under light and dark conditions indicate the interaction of surface functional groups to Cr(VI). Cr(VI) removal study carried out in the Cr(VI)-Cr(III) mixture showed a decrease in Cr(VI) removal capacity with increase in Cr(III) concentration. A 92% regeneration of nanoparticle was observed indicating efficient reusability of the system. The applicability of the nanotitania in Cr(VI) contaminated water was studied by spiking Cr(VI) in natural water matrices like ground water and lake water.
CITATION STYLE
Paul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-y
Mendeley helps you to discover research relevant for your work.