Water turbidity estimation from lidar bathymetry data by full-waveform analysis - Comparison of two approaches

8Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Airborne LiDAR bathymetry is an efficient technique for surveying the bottom of shallow waters. In addition, the measurement data contain valuable information about the local turbidity conditions in the water body. The extraction of this information requires appropriate evaluation methods examining the decay of the recorded waveform signal. Existing approaches are based on several assumptions concerning the influence of the ALB system on the waveform signal, the extraction of the volume backscatter, and the directional independence of turbidity. The paper presents a novel approach that overcomes the existing limitations using two alternative turbidity estimation methods as well as different variants of further processed full-waveform data. For validation purposes, the approach was applied to a data set of a shallow inland water. The results of the quantitative evaluation show, which method and which data basis is best suited for the derivation of area wide water turbidity information.

Cite

CITATION STYLE

APA

Richter, K., Mader, D., Westfeld, P., & Maas, H. G. (2021). Water turbidity estimation from lidar bathymetry data by full-waveform analysis - Comparison of two approaches. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 43, pp. 681–688). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-681-2021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free