Functional characterization of the neuronal-specific K-Cl cotransporter: Implications for [K+](o) regulation

333Citations
Citations of this article
133Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The neuronal K-Cl cotransporter isoform (KCC2) was functionally expressed in human embryonic kidney (HEK-293) cell lines. Two stably transfected HEK-293 cell lines were prepared: one expressing an epitope- tagged KCC2 (KCC2-22T) and another expressing the unaltered KCC2 (KCC2-9). The KCC2-22T cells produced a glycoprotein of ~150 kDa that was absent from HEK-293 control cells. The 86Rb influx in both cell lines was significantly greater than untransfected control HEK-293 cells. The KCC2-9 cells displayed a constitutively active 86Rb influx that could be increased further by i mM N-ethylmaleimide (NEM) but not by cell swelling. Both furosemide [inhibition constant (K(i)) ~25 μM] and bumetanide (K(i) ~55 μM) inhibited the NEM- stimulated 86Rb influx in the KCC2-9 cells. This diuretic-sensitive 86Rb influx in the KCC2-9 cells, operationally defined as KCC2 mediated, required external Cl- but not external Na+ and exhibited a high apparent affinity for external Rb+(K+) [Michaelis constant (K(m)) = 5.2 ± 0.9 (SE) mM; n = 5] but a low apparent affinity for external Cl- (K(m) >50 mM). On the basis of thermodynamic considerations as well as the unique kinetic properties of the KCC2 isoform, it is hypothesized that KCC2 may serve a dual function in neurons: 1) the maintenance of low intracellular Cl- concentration so as to allow Cl- influx via ligand-gated Cl- channels and 2) the buffering of external K+ concentration ([K+](o) in the brain.

Cite

CITATION STYLE

APA

Payne, J. A. (1997). Functional characterization of the neuronal-specific K-Cl cotransporter: Implications for [K+](o) regulation. American Journal of Physiology - Cell Physiology, 273(5 42-5). https://doi.org/10.1152/ajpcell.1997.273.5.c1516

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free