Default priors for gaussian processes

77Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

Motivated by the statistical evaluation of complex computer models, we deal with the issue of objective prior specification for the parameters of Gaussian processes. In particular, we derive the Jeffreys-rule, independence Jeffreys and reference priors for this situation, and prove that the resulting posterior distributions are proper under a quite general set of conditions. A proper flat prior strategy, based on maximum likelihood estimates, is also considered, and all priors are then compared on the grounds of the frequentist properties of the ensuing Bayesian procedures. Computational issues are also addressed in the paper, and we illustrate the proposed solutions by means of an example taken from the field of complex computer model validation. © Institute of Mathematical Statistics, 2005.

Cite

CITATION STYLE

APA

Paulo, R. (2005, April). Default priors for gaussian processes. Annals of Statistics. https://doi.org/10.1214/009053604000001264

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free