This study focuses on constructing a 3D geo-cellular model by using well-log data and other geological information to enable a deep investigation of the reservoir characteristics and estimation of the hydrocarbon potential in the clastic reservoir of the marginal field in offshore Vietnam. In this study, Petrel software was adopted for geostatistical modeling. First, a sequential indicator simulation (SIS) was adopted for facies modeling. Next, sequential Gaussian simulation (SGS) and co-kriging approaches were utilized for petrophysical modeling. Furthermore, the results of the petrophysical models were verified by a quality control process before determining the in-place oil for each reservoir in the field. Multiple geological realizations were generated to reduce the geological uncertainty of the model assessment for the facies and porosity model. The most consistent one would then be the best candidate for further evaluation. The porosity distribution ranged from 9 to 22%. The original oil place of clastic reservoirs in the marginal field was 50.28 MMbbl. Ultimately, this research found that the marginal field could be considered a potential candidate for future oil and gas development in offshore Vietnam.
CITATION STYLE
Vo Thanh, H., & Lee, K. K. (2022). 3D geo-cellular modeling for Oligocene reservoirs: a marginal field in offshore Vietnam. Journal of Petroleum Exploration and Production Technology, 12(1). https://doi.org/10.1007/s13202-021-01300-4
Mendeley helps you to discover research relevant for your work.