Combining Theory and Experiment to Characterize the Voltammetric Behavior of Nickel Anodes in the Simons Process

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Simons process, otherwise known as the electrochemical fluorination (ECF) method, is widely used in industry to electrolytically synthesize chemicals for various purposes. Even to this day, the exact mechanism of the ECF reaction remains unknown, but is believed to involve the formation of an anodic nickel fluoride film with highly oxidized nickel centers. In this study, experiments and density functional theory calculations are combined to characterize the initial anodic peak occurring at potentials typically required in an ECF cell. NiF2 is believed to form a passivating layer at low potentials. The calculations show that a potential of +3.1 V is required to oxidize surface Ni2+ centers to Ni3+. This is in good agreement with the measured anodic peak at +3.57 V.

Cite

CITATION STYLE

APA

Mattsson, S., Senges, G., Riedel, S., & Paulus, B. (2020). Combining Theory and Experiment to Characterize the Voltammetric Behavior of Nickel Anodes in the Simons Process. Chemistry - A European Journal, 26(47), 10781–10786. https://doi.org/10.1002/chem.202000881

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free