Land surface temperature (LST) is a key parameter in environment and earth science study, especially for monitoring drought. The objective of this work is a comparison of two split-window methods: Mao method and Sobrino method, for retrieving LST using MODIS (Moderate-resolution Imaging Spectroradiometer) data in North China Plain. The results show that the max, min and mean errors of Mao method are 1.33K, 1.54K and 0.13K lower than the standard LST product respectively; while those of Sobrino method are 0.73K, 1.46K and 1.50K higher than the standard respectively. Validation of the two methods using LST product based on weather stations shows a good agreement between the standard and Sobrino method, with RMSE of 1.17K, whereas RMSE of Mao method is 1.85K. Finally, the study introduces the Sobmao method, which is based on Sobrino method but simplifies the estimation of atmospheric water vapour content using Mao method. The Sobmao method has almost the same accuracy with Sobrino method. With high accuracy and simplification of water vapour content estimation, the Sobmao method is recommendable in LST inversion for good application in Ningxia region, the northwest China, with mean error of 0.33K and the RMSE value of 0.91K. © Printed in India.
CITATION STYLE
Zhao, S., Qin, Q., Yang, Y., Xiong, Y., & Qiu, G. (2009). Comparison of two split-window methods for retrieving land surface temperature from MODIS data. Journal of Earth System Science, 118(4), 345–353. https://doi.org/10.1007/s12040-009-0027-4
Mendeley helps you to discover research relevant for your work.