Alignment of low-dose X-ray fluorescence tomography images using differential phase contrast

9Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

X-ray fluorescence nanotomography provides unprecedented sensitivity for studies of trace metal distributions in whole biological cells. Dose fractionation, in which one acquires very low dose individual projections and then obtains high statistics reconstructions as signal from a voxel is brought together (Hegerl & Hoppe, 1976), requires accurate alignment of these individual projections so as to correct for rotation stage runout. It is shown here that differential phase contrast at 10.2 keV beam energy offers the potential for accurate cross-correlation alignment of successive projections, by demonstrating that successive low dose, 3 ms per pixel, images acquired at the same specimen position and rotation angle have a narrower and smoother cross-correlation function (1.5 pixels FWHM at 300 nm pixel size) than that obtained from zinc fluorescence images (25 pixels FWHM). The differential phase contrast alignment resolution is thus well below the 700 nm × 500 nm beam spot size used in this demonstration, so that dose fractionation should be possible for reduced-dose, more rapidly acquired, fluorescence nanotomography experiments.© 2014 International Union of Crystallography.

Cite

CITATION STYLE

APA

Hong, Y. P., Gleber, S. C., O’Halloran, T. V., Que, E. L., Bleher, R., Vogt, S., … Jacobsen, C. (2014). Alignment of low-dose X-ray fluorescence tomography images using differential phase contrast. Journal of Synchrotron Radiation, 21(1), 229–234. https://doi.org/10.1107/S1600577513029512

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free