X-ray powder diffraction to analyse bimetallic core-shell nanoparticles (gold and palladium; 7-8 nm)

15Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A comparative X-ray powder diffraction study on poly(N-vinyl pyrrolidone) (PVP)-stabilized palladium and gold nanoparticles and bimetallic Pd-Au nanoparticles (both types of core-shell nanostructures) was performed. The average diameter of Au and Pd nanoparticles was 5 to 6 nm. The two types of core-shell particles had a core diameter of 5 to 6 nm and an overall diameter of 7 to 8 nm, i.e. a shell thickness of 1 to 2 nm. X-ray powder diffraction on a laboratory instrument was able to distinguish between a physical mixture of gold and palladium nanoparticles and bimetallic core-shell nanoparticles. It was also possible to separate the core from the shell in both kinds of bimetallic core-shell nanoparticles due to the different domain size and because it was known which metal was in the core and which was in the shell. The spherical particles were synthesized by reduction with glucose in aqueous media. After purification by multiple centrifugation steps, the particles were characterized with respect to their structural, colloid-chemical, and spectroscopic properties, i.e. particle size, morphology, and internal elemental distribution. Dynamic light scattering (DLS), differential centrifugal sedimentation (DCS), atomic absorption spectroscopy (AAS), ultraviolet-visible spectroscopy (UV-vis), high-angle annular dark field imaging (HAADF), and energy-dispersed X-ray spectroscopy (EDX) were applied for particle characterization.

Cite

CITATION STYLE

APA

Rostek, A., Loza, K., Heggen, M., & Epple, M. (2019). X-ray powder diffraction to analyse bimetallic core-shell nanoparticles (gold and palladium; 7-8 nm). RSC Advances, 9(46), 26628–26636. https://doi.org/10.1039/c9ra05117a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free