Boosting focally-induced brain plasticity by dopamine

227Citations
Citations of this article
310Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Dopamine (DA) simultaneously produces both excitation and inhibition in the human cortex. In order to shed light on the functional significance of these seemingly opposing effects, we administered the DA precursor levodopa (L-dopa) to healthy subjects in conjunction with 2 neuroplasticity-inducing motor cortex stimulation protocols. Transcranial direct current stimulation (tDCS) induces cortical excitability enhancement by anodal and depression by cathodal brain polarization, which is not restricted to specific subgroups of synapses. In contrast, paired associative stimulation (PAS) induces focal excitability enhancements of somatosensory and motor cortical neuronal synaptic connections. Here, we show that administering L-dopa turns the unspecific excitability enhancement caused by anodal tDCS into inhibition and prolongs the cathodal tDCS-induced excitability diminution. Conversely, it stabilizes the PAS-induced synapse-specific excitability increase. Most importantly, it prolongs all of these aftereffects by a factor of about 20. Hereby, DA focuses synapse-specific excitability-enhancing neuroplasticity in human cortical networks. © The Author 2007. Published by Oxford University Press. All rights reserved.

Cite

CITATION STYLE

APA

Kuo, M. F., Paulus, W., & Nitsche, M. A. (2008). Boosting focally-induced brain plasticity by dopamine. Cerebral Cortex, 18(3), 648–651. https://doi.org/10.1093/cercor/bhm098

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free