Air-core-liquid-ring (ACLR) atomization part II: Influence of process parameters on the stability of internal liquid film thickness and resulting spray droplet sizes

12Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Air-core-liquid-ring (ACLR) atomization presents a specific type of internal mixing pneumatic atomization. It can be used for disintegration of high viscous feed liquids into small droplets at relatively low gas consumptions. However, the specific principle of ACLR atomization is still under research and no guidelines for process and atomizer design are available. Regarding literature on pre-filming atomizers, it can be hypothesized for ACLR atomization that the liquid film thickness inside the exit orifice of the atomizer, as well as the resulting spray droplet sizes decrease with increasing air-to-liquid ratio (ALR) and decreasing feed viscosity. In this study, the time dependent liquid film thickness inside the exit orifice of the atomizer was predicted by means of computational fluid dynamics (CFD) analysis. Results were compared to high speed video images and correlated to measured spray droplet sizes. In conclusion, the hypothesis could be validated by simulation and experimental data, however, at high viscosity and low ALR, periodic gas core breakups were detected in optical measurements. These breakups could not be predicted in CFD simulations, as the simplification of an incompressible gas phase was applied in order to reduce computational costs and time. Nevertheless, the presented methods show good potential for improvement of atomizer geometry and process design as well as for further investigation of the ACLR atomization principle.

Cite

CITATION STYLE

APA

Wittner, M. O., Ballesteros, M. A., Link, F. J., Karbstein, H. P., & Gaukel, V. (2019). Air-core-liquid-ring (ACLR) atomization part II: Influence of process parameters on the stability of internal liquid film thickness and resulting spray droplet sizes. Processes, 7(9). https://doi.org/10.3390/pr7090616

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free