The relatively complex task of detecting 3D objects is essential in the realm of autonomous driving. The related algorithmic processes generally produce an output that consists of a series of 3D bounding boxes that are placed around specific objects of interest. The related scientific literature usually suggests that the data that are generated by different sensors or data acquisition devices are combined in order to work around inherent limitations that are determined by the consideration of singular devices. Nevertheless, there are practical issues that cannot be addressed reliably and efficiently through this strategy, such as the limited field-of-view, and the low-point density of acquired data. This paper reports a contribution that analyzes the possibility of efficiently and effectively using 3D object detection in a cooperative fashion. The evaluation of the described approach is performed through the consideration of driving data that is collected through a partnership with several car manufacturers. Considering their real-world relevance, two driving contexts are analyzed: a round-about, and a T-junction. The evaluation shows that cooperative perception is able to isolate more than 90% of the 3D entities, as compared to approximately 25% in the case when singular sensing devices are used. The experimental setup that generated the data that this paper describes, and the related 3D object detection system, are currently actively used by the respective car manufacturers’ research groups in order to fine tune and improve their autonomous cars’ driving modules.
CITATION STYLE
Bocu, R., Bocu, D., & Iavich, M. (2021). Objects detection using sensors data fusion in autonomous driving scenarios. Electronics (Switzerland), 10(23). https://doi.org/10.3390/electronics10232903
Mendeley helps you to discover research relevant for your work.