We demonstrated, for the first time, atomically precise synthesis of gold cluster cations by magnetron sputtering of a gold target onto a polyethylene glycol (PEG) solution of 1,3-bis(diphenylphosphino)propane (Ph2PCH2CH2CH2PPh2, dppp). UV-vis absorption spectroscopy and electrospray ionization mass spectrometry revealed the formation of cationic species, such as [Au(dppp)n]+ (n = 1, 2), [Au2(dppp)n]2+ (n = 3, 4), [Au6(dppp)n]2+ (n = 3, 4), and [Au11(dppp)5]3+. The formation of [Au(dppp)2]+ was ascribed to ionization of Au(dppp)2 by the reaction with PEG, based on its low ionization energy, theoretically predicted, mass spectrometric detection of deprotonated anions of PEG. We proposed that [Au(dppp)2]+ cations thus formed are involved as key components in the formation of the cluster cations.
CITATION STYLE
Wang, L., Omoda, T., Koyasu, K., & Tsukuda, T. (2022). Controlled Synthesis of Diphosphine-Protected Gold Cluster Cations Using Magnetron Sputtering Method. Molecules, 27(4). https://doi.org/10.3390/molecules27041330
Mendeley helps you to discover research relevant for your work.