Background: Spiral grain angle (SGA) is a wood property that has a strong influence on end-product quality, particularly for solid timber, and most commercial log and timber grading rules restrict the amount of visible surface sloping grain. The aim of this study was to develop parametric models that can be used to predict the intra- and inter-stem variation in SGA in radiata pine (Pinus radiata D.Don) trees growing in New Zealand. Methods: Empirical models were developed using a dataset that contained records from over 1,100 trees that had SGA measured in both the radial direction and at different heights up the stem. Linear and nonlinear model forms were evaluated for their ability to predict the radial variation in SGA. Results: Most values of spiral grain angle were between −5° and +10°, with a few extreme values (up to 20°) observed. A simple linear model based on cambial age was able to account for the radial variation in SGA outside of the innermost growth rings, but only explained 26 % of the overall variation in SGA. Including a relative height term in this linear model increased the proportion of variation in SGA explained to 30 %. A variance components analysis showed that 78 % of the variation in SGA occurred within individual stems, with only 7 % of the variation due to differences between sites. Conclusions: Our results confirmed that SGA decreased from the inner growth rings to the bark and increased with height up the stem, with low values of SGA only found in the lower peripheral part of the stem. Given that the data came from a wide range of sites, the relatively small amount of inter-site variation was unexpected. The models developed here can be incorporated into a growth and yield simulation system to enable forest managers to compare the potential impacts of different factors on the size of the corewood zone in a tree containing wood with high SGA.
CITATION STYLE
Moore, J. R., Cown, D. J., & McKinley, R. B. (2015). Modelling spiral grain angle variation in New Zealand-grown radiata pine. New Zealand Journal of Forestry Science, 45(1). https://doi.org/10.1186/s40490-015-0046-7
Mendeley helps you to discover research relevant for your work.