Abstract
Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions enjoying such a property are also known as uniform Glivenko-Cantelli classes. In this paper, we prove, through a generalization of Sauer's lemma that may be interesting in its own right, a new characterization of uniform Glivenko-Cantelli classes. Our characterization yields Dudley, Giné and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a simple combinatorial quantity generalizing the Vapnik-Chervonenkis dimension. We apply this result to obtain the weakest combinatorial condition known to imply PAC learnability in the statistical regression (or "agnostic") framework. Furthermore, we find a characterization of learnability in the probabilistic concept model, solving an open problem posed by Kearns and Schapire. These results show that the accuracy parameter plays a crucial role in determining the effective complexity of the learner's hypothesis class.
Author supplied keywords
Cite
CITATION STYLE
Alon, N., Ben-David, S., Cesa-Bianchi, N., & Haussler, D. (1997). Scale-sensitive dimensions, uniform convergence, and learnability. Journal of the ACM, 44(4), 615–631. https://doi.org/10.1145/263867.263927
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.