Genetic Evidence for Sexuality in Cochliopodium (Amoebozoa)

14Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Microbial eukaryotes, including amoeboids, display diverse and complex life cycles that may or may not involve sexual reproduction. A recent comprehensive gene inventory study concluded that the Amoebozoa are ancestrally sexual. However, the detection of sex genes in some lineages known for their potentially sexual life cycle was very low. Particularly, the genus Cochliopodium, known to undergo a process of cell fusion, karyogamy, and subsequent fission previously described as parasexual, had no meiosis genes detected. This is likely due to low data representation, given the extensive nuclear fusion observed in the genus. In this study, we generate large amounts of transcriptome data for 2 species of Cochliopodium, known for their high frequency of cellular and nuclear fusion, in order to study the genetic basis of the complex life cycle observed in the genus. We inventory 60 sex-related genes, including 11 meiosis-specific genes, and 31 genes involved in fusion and karyogamy. We find a much higher detection of sex-related genes, including 5 meiosisspecific genes not previously detected in Cochliopodium, in this large transcriptome data. The expressed genes form a near-complete recombination machinery, indicating that Cochliopodium is an actively recombining sexual lineage. We also find 9 fusion-related genes in Cochliopodium, although no conserved fusion-specific genes were detected in the transcriptomes. Cochliopodium thus likely uses lineage specific genes for the fusion and depolyploidization processes. Our results demonstrate that Cochliopodium possess the genetic toolkit for recombination, while the mechanism involving fusion and genome reduction remains to be elucidated.

Cite

CITATION STYLE

APA

Wood, F. C., Heidari, A., Tekle, Y. I., & Wilson Sayres, M. (2017). Genetic Evidence for Sexuality in Cochliopodium (Amoebozoa). In Journal of Heredity (Vol. 108, pp. 769–779). Oxford University Press. https://doi.org/10.1093/jhered/esx078

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free