Interleukin-35 exhibits protective effects in a rat model of hypoxic-ischemic encephalopathy through the inhibition of microglia-mediated inflammation

8Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Background: Hypoxic-ischemic encephalopathy (HIE) brain damage is related to inflammatory responses and oxidative stress. Interleukin (IL)-35 is an antioxidant and anti-inflammatory cytokine. Thus, the effect of IL-35 treatment on neonatal rats with hypoxic-ischemic brain injury was investigated. Methods: A total of 96 7-day-old Sprague Dawley rats were randomly divided into three groups: sham group, HIE group, and IL-35 group. After left common carotid occlusion and 2.5 h hypoxia (HI injury), IL-35 (20 μg/g) was intraperitoneally (i.p.) administered to the pups. In vitro, BV2 cells were treated with or without IL-35 6 h before oxygen-glucose deprivation (OGD) insult and the microglia culture medium (MCM) was co-cultured with b.End3 cerebral vascular endothelial cells. Microglial polarization and activation were assessed by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and enzyme-linked immunosorbent assay (ELISA). Endothelial cell dysfunction was measured by cell counting kit-8 and Western blot assays. Results: Administration of IL-35 alleviated neurological deficiencies, decreased brain edema, ameliorated cerebral infarction, and limited M1 microglial polarization in HI-injured pups. Meanwhile, IL-35 decreased pro-inflammatory cytokines, tumor necrosis factor-α, IL-1β, and reactive oxygen species generation in OGD-induced bEnd.3 cells. Furthermore, IL-35 treatment could reverse the vascular endothelial cell injury induced by microglial polarization. Finally, IL-35 markedly suppressed the activation of hypoxia-inducible factor-1α (HIF-1α) and the nuclear factor-κB (NF-κB) signaling pathway in vivo and in vitro. Conclusions: IL-35 relieved hypoxic-ischemic-induced brain injury and inhibited the inflammatory response by suppressing microglial polarization and activation. These results suggest that IL-35 might have potential applications for the treatment of HIE.

Cite

CITATION STYLE

APA

Liu, G., Li, M., Qian, S., Yu, L., Qian, L., & Feng, X. (2022). Interleukin-35 exhibits protective effects in a rat model of hypoxic-ischemic encephalopathy through the inhibition of microglia-mediated inflammation. Translational Pediatrics, 11(5), 651–662. https://doi.org/10.21037/tp-22-100

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free