Solving linear equations with messenger-field and conjugate gradient techniques: An application to CMB data analysis

4Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

We discuss linear system solvers invoking a messenger-field and compare them with (preconditioned) conjugate gradient approaches. We show that the messenger-field techniques correspond to fixed point iterations of an appropriately preconditioned initial system of linear equations. We then argue that a conjugate gradient solver applied to the same preconditioned system, or equivalently a preconditioned conjugate gradient solver using the same preconditioner and applied to the original system, will in general ensure at least a comparable and typically better performance in terms of the number of iterations to convergence and time-To-solution. We illustrate our conclusions with two common examples drawn from the cosmic microwave background (CMB) data analysis: Wiener filtering and map-making. In addition, and contrary to the standard lore in the CMB field, we show that the performance of the preconditioned conjugate gradient solver can depend significantly on the starting vector. This observation seems of particular importance in the cases of map-making of high signal-To-noise ratio sky maps and therefore should be of relevance for the next generation of CMB experiments.

Cite

CITATION STYLE

APA

Papež, J., Grigori, L., & Stompor, R. (2018). Solving linear equations with messenger-field and conjugate gradient techniques: An application to CMB data analysis. Astronomy and Astrophysics, 620. https://doi.org/10.1051/0004-6361/201832987

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free