Improvising personalized travel recommendation system with recency effects

152Citations
Citations of this article
149Readers
Mendeley users who have this article in their library.

Abstract

A travel recommendation system based on social media activity provides a customized place of interest to accommodate user-specific needs and preferences. In general, the user's inclination towards travel destinations is subject to change over time. In this project, we have analyzed users' twitter data, as well as their friends and followers in a timely fashion to understand recent travel interest. A machine learning classifier identifies tweets relevant to travel. The travel tweets are then used to obtain personalized travel recommendations. Unlike most of the personalized recommendation systems, our proposed model takes into account a user's most recent interest by incorporating time-sensitive recency weight into the model. Our proposed model has outperformed the existing personalized place of interest recommendation model, and the overall accuracy is 75.23%.

Cite

CITATION STYLE

APA

Nitu, P., Coelho, J., & Madiraju, P. (2021). Improvising personalized travel recommendation system with recency effects. Big Data Mining and Analytics, 4(3), 139–154. https://doi.org/10.26599/BDMA.2020.9020026

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free